CHARLOTTE

COLLEGE OF ENGINEERING

Senior Design II Expo: Fall 2021

Re-design of a Frame Rail De-nesting Operation DAIMLER

DAIM_RAIL Team: Kayla Westmoreland (kwestmo2@uncc.edu), Hayden Adermann (haderman@uncc.edu), Nathan Moore (nmoore28@uncc.edu), Gabriel Falls

(gfalls@uncc.edu), Abdullah Eisa (aeisa@uncc.edu), Jerome Dormoy (Team Lead jdormoy@uncc.edu), John Dunne (Mentor jdunne1@uncc.edu)

Project Overview

Background

- Daimler Truck and Buses 35+ locations
- Around 10,000 employees
- While the company makes seven vehicle

brands, the Mount Holly location produces the Freightliner medium-duty Business Class M2/SD model as well as an ecoated cab for the Western Star units.

Objectives

- Execute an in-depth analysis of their frame rail denesting operation.
- Reduce downtime, increase productivity and create a more efficient cost-effective
- · Design a method that will adjust the performance of the denesting machine and prevent any human or mechanical error that may occur during the operation.

Denesting Operation

Project Specifications

Specifications

- PS1: Reduce the average number of dropped frame rails per month by 80%.
- PS2: Operation will take no longer than 6 minutes to complete a denesting cycle.
- PS3: Ensure magnets do not exceed 180°F (82°C), causing a reduction in breakaway

- · Analysis of the process of the denesting operation.
- . Design aims to reduce down time caused by heavy rails falling off the denester.
- The team will determine a solution that the budget will allow and reduce downtime as well as promote continuous processing.

Visualization of the issue

Design

Design Philosophy

Independent articulation of the magnets eliminates the likelihood that a bolt will prevent all three magnets from

- . Uses the existing magnet mount with minor changes to ensure compatibility with the machine.
- Only implemented on the top magnet mounts.
- Designed to make bearing and polyurethane replacement as easy as possible.

bolt it gets pushed vertically out of the

· While the other two magnets can make

proper contact with the rail.

Engineering Drawing

Urethane Tubes

Testing

- Max stress is 126.8 MPA and max displacement is 0.1090mm
- Guide rods have a safety factor of 5.
- · Two different durometers of polyurethane were tested, 90A and 80A

80A

Polyurethane Tubes

500 lbf

0.060"

Tested with valve spring tester

• The team chose 80A because it provided the best combination of deflection and durability.

- The guide rods had minimal deflection as designed.
- 80A polyurethane compressed as intended, allowing the magnet to remain in contact

Implementation

- Steel parts were manufactured using CNC machining to ensure the parts were as precise as possible while minimizing material loss.
- Assembly was done by the team with assistance from Daimlers maintenance team.
- . The assembly was installed by Daimlers maintenance team and tested on the rail present on the denester.
- The polyurethane deflected as expected when a bolt was on the frame rail which allowed the other magnets to attach to the rail as designed.
- The team used \$2,158 of \$3,000 given.

Implementation Pictures

