

Description of Problem

The Industry Supporter for the ELEC FABRIC project is Electrolux, a premier global appliance manufacturer. Electrolux is a socially responsible company, committed to both consumer satisfaction and sustainability. Electrolux tasked the team with developing a greywater reuse system for the washing machine testing performed at their Fabric Care and Reliability Lab.

Specification	Application	
Description	Prototype	Large Scale
At least 50% water reuse*		\checkmark
Remove target contaminants**	\checkmark	\checkmark
Total hardness of 20-40 ppm	\checkmark	\checkmark
Provide flux rate data	\checkmark	
Designed for variable consists domanda		./

Designed for variable capacity demands * This is the minimum reclamation requirements; however the system is designed for a 100% theoretical rate of return with minor losses in operation ** Target contaminants differ between RO and UF systems

Design Assumptions

Initial Greywater Testing

- TDS (salts and detergents), and TSS (lint, soil, and other debris) were found to be the primary parameters of concern.
- Total Water Hardness within acceptable limits before treatment.
- Normal pH level (6-9).

Facility Water Demand:

- 64 washers operating at approximately 60% capacity.
- Variable flow=variable demand.
- Based on utility data facility demand an estimated annual water consumption of 3.75 million gallons.

Filtration Techniques

Reverse Osmosis

- Pressure driven • Greater removal efficiency (TDS and Turbidity)
- Produces nearly pure water
- Lower flux rate
- More membrane are required
- More expensive

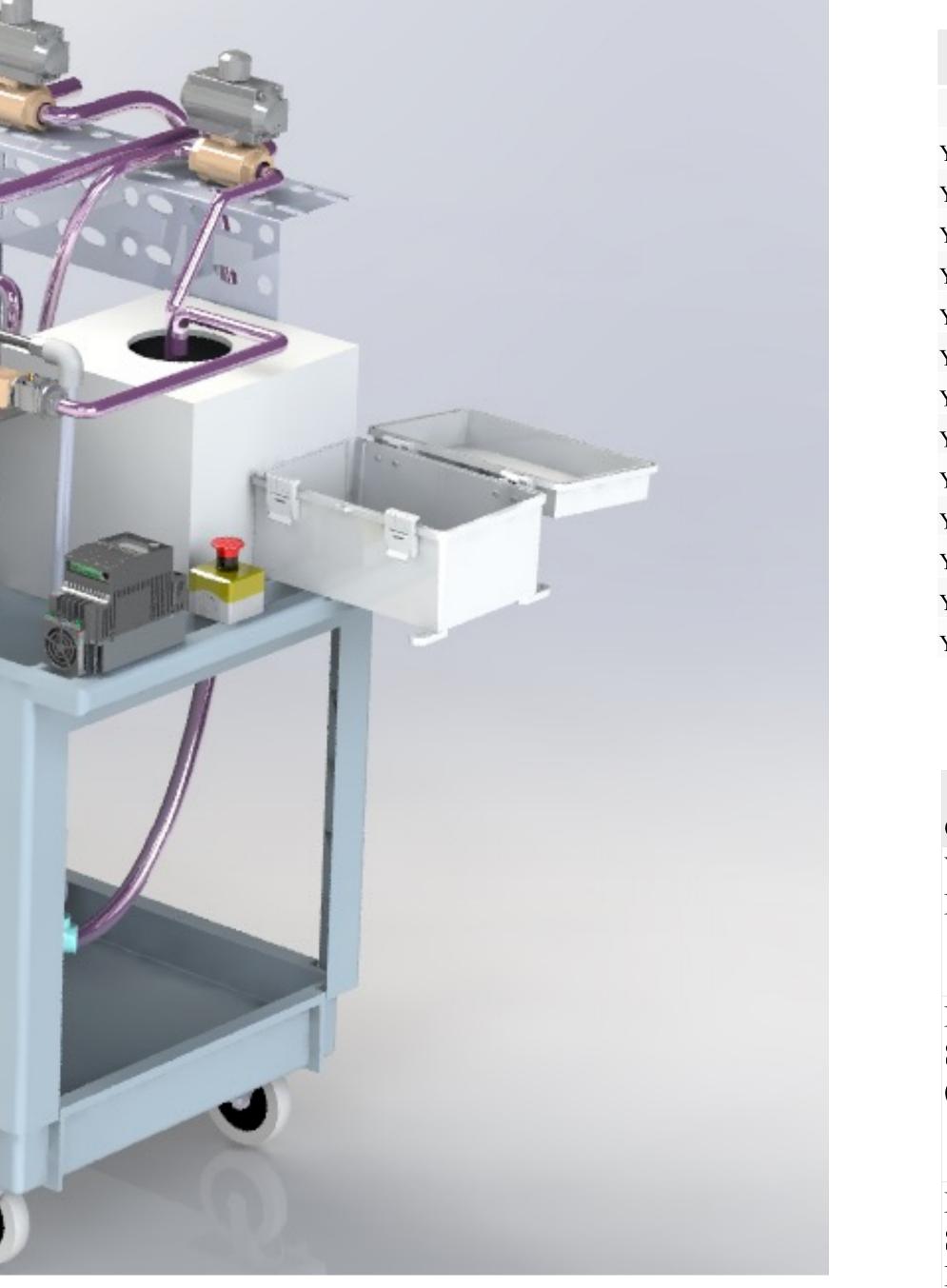
- Removes TSS
- Membrane based
- Crossflow tubular
- membranes
- CIP

• Flow driven

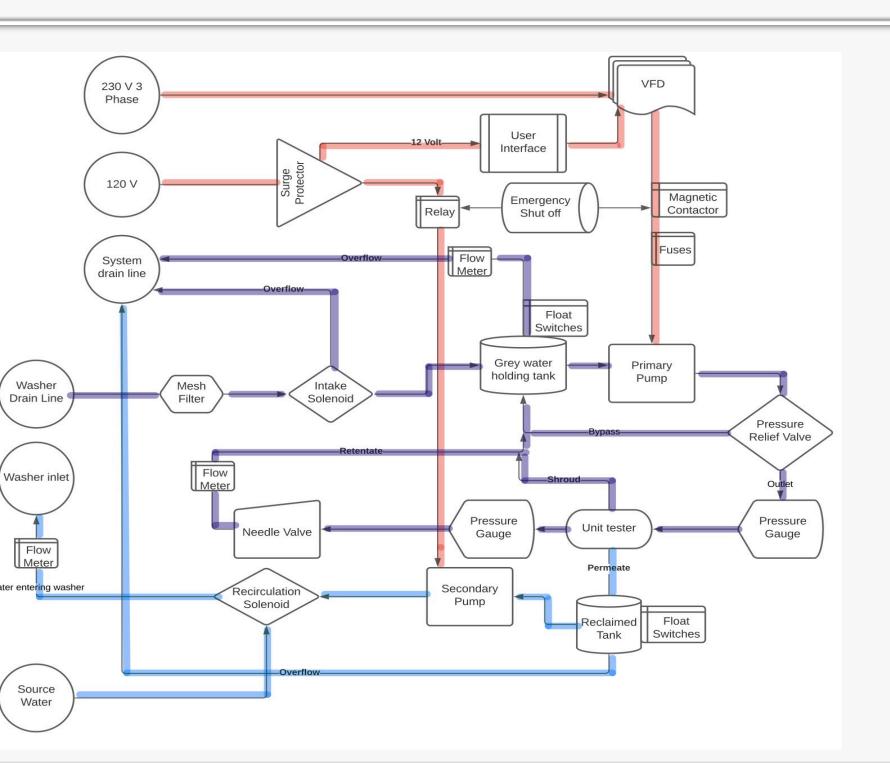
Ultrafiltration

- Passes detergent
- Greater flux rate
- Less membrane are required
- Smaller pump
- Cheaper system

SENIOR DESIGN II - FALL 2021 EXPO Water Reclamation System For Electrolux Fabric Care Reliability Lab


Chandler Horton, Gabe Martinez, Samuel Norvell, Tyler Salisbury, Alex Senneville, Jeremie Tuzizila Facility Mentor: Steve Kiser | Industry Supporters: Anthony Lufkin, Richard Hudson, Rajesh Patel

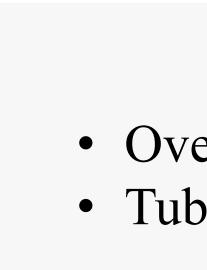
System Details


Electrical Specifications

- 230 Volt 3 Phase 60 Hz AC input primary pump
- 120 Volt AC input for secondary pump
- 12 Volt DC input for microcontroller
- 4 PLS-092A-3PPH Float sensors
- 2 BVB6TV-XR33-J Solenoids
- 4 Digiten Flow meter sensors
- Teco Westinghouse E510 VFD
- Protection circuit from wall to VFD
- Custom built controller using the STM32F411Re MCU Dev. Board
- Simulink Embedded Coder used to generate C/C++ code
- Informative user interface
- Autonomous functionality

Mechanical Specifications

- ³/₄" Stainless Steel NPT Plumbing
- 2HP Motor
- 300 + PSI
- Pressure Relief Valve
- Needle Valve
- Pressure Gauges



Reverse Osmosis		
	Net Yearly	Cumulative
Year 0	\$ (322,000.00)	\$ (322,000.00)
Year 1	\$ 19,408.16	\$ (302,591.84)
Year 2	\$ 20,873.97	\$ (281,717.87)
Year 3	\$ 22,398.71	\$ (259,319.17)
Year 4	\$ 23,984.72	\$ (235,334.45)
Year 5	\$ 25,634.48	\$ (209,699.97)
Year 6	\$ 27,350.54	\$ (182,349.43)
Year 7	\$ 29,135.56	\$ (153,213.86)
Year 8	\$ 30,992.32	\$ (122,221.54)
Year 9	\$ 32,923.68	\$ (89,297.86)
Year 10	\$ 34,932.65	\$ (54,365.21)
Year 11	\$ 37,022.34	\$ (17,342.87)
Year 12	\$ 39,195.99	\$ 21,853.11

C 4	Economic				
Category	Savings	Ecological	Community	Certifications	
Water Reuse	\$15,000- \$20,000/yr	Drought prevention, water conservation, groundwater/surface water preservation	More water availability, setting sustainability precedent for industry	LEED BD+C NSF/ANSI 350	
Detergent Savings (UF)	50% reduction	Reduced chemical loading, less production and less depletion of resources, less plastic being disposed of (packaging)	Model of a semi- closed loop system, demonstrates commitment to sustainability	Certified to NSF/ANSI Standard 350	
Reduced Sewage Load	\$23,000- 36,000/yr	Less potential for chemicals and high nutrient water contaminating waterways	Less waste in community systems		
Testing Desults					

Category	Economic Savings	Ecological	Community	Certifications	
Water Reuse	\$15,000- \$20,000/yr	Drought prevention, water conservation,	More water availability, setting	LEED BD+C NSF/ANSI 350	
	· , J	groundwater/surface water preservation	sustainability precedent for industry		
Detergent Savings (UF)	50% reduction	Reduced chemical loading, less production and less depletion of resources, less plastic being disposed of (packaging)	Model of a semi- closed loop system, demonstrates commitment to sustainability	Certified to NSF/ANSI Standard 350	
Reduced Sewage Load	\$23,000- 36,000/yr	Less potential for chemicals and high nutrient water contaminating waterways	Less waste in community systems		
Tosting Posults					

'For tests performed, more extensive testing required for certification.

Electrolux

Large-Scale Payback Analysis

Sustainability Benefits

lesting kesuits

• Over 50 years of experience Tubular Crossflow Technology