

NASA Robotic Competition Overview

NASA Artemis Competition to design and build prototype rover to operates lunar environments. Rover must navigate, mine, and deposit autonomously.

Design it: Plan & provide new

design implementations using previous rover

Build It: Manufacture & implement new design

changes to create efficient operational rover

Dig it: Compete at Kennedy Space Center in May 2022

Design Specifications

Current Rover Specifications:

1. Payload undeployed volume:

1.04 m length x 0.516 m width x 0.572 m height 2. Payload deployed volume:

1.32 m length x 0.516 m width x 0.728 m height

3. Mass: 56.73 kg

Implementation and Results

Autonomy

- Navigation, mining, digging, and deposition
- Intel RealSense camera detects obstacles

- Optimized flow direction
- Ability to flow icy regolith without jamming

LUNA_COMP3: NASA LUNABOTICS COMPETITION 2022 Senior Design 2 – Spring 2022

Team: Josh Cooley, Tyler Chapin, Anjila Bista, Jared Jackowitz, Jason Easterling, Dipal Shah, Cramer Ward-Collings, Charles Roberts, Angel Romero Avalos jcooley4@uncc.edu, tchapin1@uncc.edu, abista1@uncc.edu, jjackowi@uncc.edu, jeaster6@uncc.edu, dshah30@uncc.edu, cwardcol@uncc.edu, crobe110@uncc.edu, aromeroa@uncc.edu

Faculty Mentors: Dr. Aidan Browne & Dr. Michael Smith

(5/23/22 - 6/1/22) Phase 5: Competition Competition Week

- Redesign PCB with separated ground terminals
- Integrated Controller for PCB for outputs

Drum Nozzle

RealSense Camera

> Energy Meter

Power Panel

RESEARCH POSTER PRESENTATION DESIGN © 2019 www.PosterPresentations.com

LUNA_COMP3: NASA LUNABOTICS COMPEITION 2022

The Rover Overview

Conveyor Belt

Conveyor Walls

> Pozyx Tag

Linear Actuator

LUNA_COMP3: NASA LUNABOTICS COMPEITION 2022

System Hierarchy

NASA Robotic Competition Overview

Lunabotics is a NASA Artemis Competition where students are tasked to design and build a prototype rover that operates in a lunar-like environment. The rover must navigate, mine, and deposit autonomously. The Competition consists of 3 phases:

Design It: Plan and provide new design implementations using the previous rover (inherited design) **Build It:** Manufacture and implement on the new design changes to create an efficient operational rover **Dig It:** Compete in the Lunabotics Competition at Kennedy Space Center in May 2022

LUNA COMP3: NASA LUNABOTICS COMPEITION 2022

NASA Robotic Mining Competition Overview

Concept of Operations

- Rover is placed randomly in the arena and begins to navigate towards a specific location
- Rover transverses through the obstacle zone
- Rover begins to mine in the excavation zone and collect regolith in the drum
- When the drum is full, rover begins navigating to the collector sieve using the same path
- The drum fully deploys/extends and deposits on the conveyor belt
- After deposition into the collector sieve this process is repeated with a 15 min time period

Design

Current Rover Specif 1. Payload undeploye 1.04 m length x height 2. Payload deployed 1.32 m length x height 3. Mass: 56.73 kg

RESEARCH POSTER PRESENTATION DESIGN © 2019 www.PosterPresentations.com

LUNA_COMP3: NASA LUNABOTICS COMPEITION 2022

Design Specifications and process

Specifications	
fications:	Phas
ved volume:	
0.516 m width x 0.572 m	
l volume:	
0.516 m width x 0.728 m	

RESEARCH POSTER PRESENTATION DESIGN © 2019 www.PosterPresentations.com

LUNA_COMP3: NASA LUNABOTICS COMPEITION 2022

Implementations and Results

Drum Nozzle

 Optimized flow direction Ability to flow icy regolith without jamming

Power Distribution

• 12 Volt paired outputs rated for 40 Amps Complete rewiring of rover

<u>Conveyor Belt</u>

 Transport regolith into collector Folds to meet size constraints

Rock Binding Prevention

- Rock reliefs
- •Belt Brush
- Winged conveyor pulley
- Rubber back on mining buckets

LUNA_COMP3: NASA LUNABOTICS COMPEITION 2022

Testing Problems and resolutions

Power Distribution

Problem: Power and signal dropping out Solution: Buck converters incorporated

Autonomy

Problem: Operational Jams Solution: encoder redundancies

